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J. Phys. A: Math. Gen. 18 (1985) 889-898. Printed in Great Britain 

Renormalisation group study of the two-dimensional Hubbard 
model 

C Vanderzande 
Instituut voor Theoretische Fysica, Universiteit Leuven, 8-3030 Leuven, Belgium 

Received 28 August 1984 

Abstract. The Hubbard model in two dimensions is studied using a recently proposed 
renormalisation group method for fermion systems. We find that there are no phase 
transitions in the model and that the ground state is ordered antiferromagnetically. 

We also discuss the use of group theory in the renormalisation for large cells. 

1. Introduction 

A real space renormalisation group method appropriate for fermion systems was 
recently introduced (Vanderzande and Stella 1984). This method works both at finite 
and at zero temperatures. Furthermore, it correctly deals with Fermi statistics in all 
dimensions. So far, it has only been applied to the one-dimensional Hubbard model. 
Because the Jordan-Wigner transformation allows us to rewrite a fermion model in 
one dimension as a spin model, real fermion effects (due to anticommutation relations) 
only occur in higher dimensions. In the present paper, we therefore extend our study 
to the two-dimensional Hubbard model. 

The Hubbard model was originally introduced (Hubbard 1963) to evaluate the 
effects of correlations on electrons in narrow energy bands. In later years, it has been 
increasingly studied as one of the simplest fermion systems in statistical mechanics. 

The model is defined via its Hamiltonian 

H - p N = f  ~ ( c ~ ~ , u + C ~ u c i u ) + ~ ~  "IT"ZJ-WCZ niu (1) 
( I J )  I I ,  

where c ~ ( c , , )  are creation (annihilation) operators for electrons with spin U (which 
can be up (t) or down (J)) in the Wannier state centred at site i of a lattice, and 
n,, = cLc,, The parameter p is the chemical potential, U measures the intra-atomic 
Coulomb repulsion and t is the hopping parameter between nearest-neighbour sites. 
We will only consider the half-filled band, which implies p = U / 2 .  We can then rewrite 
the Hamiltonian (1) as 

For the following, it is important to have a clear idea of the symmetries present in the 
model (2). The grand partition function of ( 2 )  

(3) 
is invariant under a local phase change of the Wannier representation c,, + c,, exp(icr,). 

Z (  t ,  U )  = Tr exp[ - p ( H - p N ) ]  
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890 C Vanderzande 

On a non-frustrated lattice, like the square one, we can choose a ,  - a, = =k7r for every 
pair of nearest neighbours, and therefore we have 

Z(t, U ) = Z ( - t ,  U ) .  (4) 

c , , * c ~  exp(ia,) ,  U = ?  or J., ( 5 )  

If we combine the phase change described above with a particle-hole exchange 

we have a transformation which leaves the Hamiltonian (2) invariant. This symmetry 
is not present on a frustrated lattice, like the triangular one. In this case the possible 
critical behaviour of the model may be different from the one on a hypercubic lattice. 
This can be understood in another way: in the large-U limit, ( 2 )  becomes equivalent 
to an antiferromagnetic Heisenberg model (Richmond and Sewell 1968). It is therefore 
clear that the model behaves differently, depending on whether the lattice is frustrated 
or not. 

In this paper, we study the Hubbard model on a square lattice. The properties of 
this model are little known. A Mermin-Wagner-like theorem shows that there is no 
magnetic ordering at finite temperature (Jedrzejewski and Verbeure 1981 1. 

Some authors suggest that on hypercubic lattices, the ground state is insulating as 
soon as U is non-zero (Richmond 1969, Chaikin et a1 1975). Mean-field-like calcula- 
tions, on the other hand, indicate the presence of a transition in the ground state or 
at finite temperature (Caron and Pratt 1968, Wolff 1983), or indicate that the ground 
state is antiferromagnetically ordered (Oitmaa and Betts 1978). Of course, these 
mean-field results are rather doubtful. Recently, the two-dimensional Hubbard model 
has been studied using a Monte Carlo method (Hirsch 1983). The ground state was 
found to be antiferromagnetic, whereas at finite temperature the model was an insulating 
paramagnet. Neither in the ground state, nor at finite temperature do the Monte Carlo 
results suggest the presence of phase transitions. There is thus no clear idea of the 
critical behaviour of this model. It is therefore clear that an independent calculation 
of the properties of this model as presented in this paper is very useful. 

2. The renormalisation group method 

We study the two-dimensional Hubbard mdel using a real space renormalisation group 
method. In  this method, we divide the lattice into cells of n, sites. In our calculation 
n, = 5, and the cells are cross-shaped (figure I ) ? .  The Hamiltonian is split into intracell 
parts H0+ ( a  labels the cell) and intercell interactions such that 

H = H O + V  
where 

Ho = c H0.a 
0 

and 

t On a square lattice, the simplest possible cell would be a square cell with n. = 4. The spectrum of this 
cell does not however have the right symmetry properties. The ground state of the cell Hamiltonian would 
be a boson state. It can then be calculated that U' ,  the renormalised Coulomb interaction, would become 
negative. Furthermore, experience (Hanke and Hirsch 1982) tells us that for fermion systems cells with an 
odd number of sites give better results. 
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The next step consists of the diagonalisation of Ha,,. In principle, this requires the 
diagonalisation of a 4’ ~4~ = 1024 x 1024 matrix. We will return to this problem later. 

The energy eigenstates are divided into four groups, corresponding to cell states 
IvuT, vUl). The cell occupation numbers vat and val can be either zero or plus one (e.g. 
the cell state l+)’has va t=  1, v U r = 0 ;  l0)’has vat= vU1=O,. ..). 

Within each group, the states are labelled with some extra index T,, so that the set 
of eigenstates of can be denoted as 

lvaT, v a J ,  T u )  v , T = O ,  1, v , ~ = O ,  1, T,  = 1,4“~-’  =256. 

A state of the whole lattice can then be written as 

Because of the Fermi character, a convention has to be made concerning the ordering 
of the states in (8a)  and ( 8 b ) .  This problem will also be discussed below. 

We are now ready to set up our renormalisation transformation. This maps the 
Hamiltonian H onto a renormalised one, H’, defined by 

({vu?}, {valllexP(-P’H‘)I{ v & t L  {v&l ) )  

= Tq7J{vuT}, {val>, {Ta}lexP(-PH)l{4?,l, { v & r > ,  { T a l ) .  (9) 

This mapping preserves the free energy. 

exponentials in (9) are developed using the Feynman identity (Stella et a1 1983) 
In almost all cases of interest, (9) cannot be worked out exactly. Therefore the 

exP(-PH) = exp(-pH,)T, dA exp(AH,) V exp(-AH,) (10) 

with TA being a ‘time ordering’ operator with respect to the variable A. Similarly, the 
exponential on the L H S  of equation (9) is developed in powers of V‘, the intercell 
hopping. The Hamiltonian Hb describes the intracell Coulomb repulsion. In this way, 
If’ can be determined order by order in V. 

In this paper, we have performed our calculation to first order. It can be shown 
(Stella et a1 1983) that the mapping defined by (9) and (10) has a meaningful ground 
state ( p + 03) limit. Indeed, going to first order, one recovers in that limit a well known 
renormalisation transformation for quantum systems (Pfeuty et a1 1982). 

We now turn to the problem of the ordering in product states like (8a)  and ( 8 b ) .  
In a previous paper (Vanderzande and Stella 1984), we have shown that this ordering 
is in fact irrelevant as long as the division of the eigenstates of Elo,, into four groups 
obeys one rule: fermion states should be mapped onto fermion states, and boson states 
onto boson states. For example, a state with four electrons present, all of them with 
spin up, should be mapped either onto the cell state with no electrons present, or onto 
the cell state with two electrons, but not onto the state with one electron with spin up 
(I+)’), as would be done in a majority-like rule of the type often used in magnetic spin 
problems. In this way, a correct description of the fermion character puts limits on 
the freedom inherent in the map (9). 
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We choose the following division of the eigenstates into four groups, 
( i )  states with zero, two or four (resp six, eight or ten) electrons present are mapped 

onto the IO)‘ (resp I*)’) state, 
(ii) fermion states (one, three, five, seven or nine electrons) for which I,,, s:,,> 

O ( < O )  are mapped onto the I + ) ‘  (I-)’) state. (s:,~ = n,,,? - n, , , l )  (see also table I ) .  This 
division is possible because both E,,, I;, rial,, and XIE, s‘,, commute with Ho,,. 

3. The 7, labelling problem; use of group theory 

The transformation (9) has a threefold freedom. Firstly, one can choose to work either 
with eigenstates of HO,, as we do, or with other states Ivar, val ,  T ~ ) .  We will make 
further use of this freedom in this paper. Secondly, there is a freedom in the choice 
of the division of the eigenstates into four groups: we dealt with this in the preceding 
section. Finally, one has the freedom of giving the states within a group a label T,. 

Because (9) in first order (see equations (1 1) and (13) below) involves the calculation 
of matrix elements of V between states in different groups with the same T,, it is the 
relative T, labelling which is important. 

In the choice of this labelling, symmetry principles can be very helpful. (Vander- 
zande and Stella 1984, Stella er al 1983). As in the case of the Hubbard model in 
d = 1, in  order to preserve the basic symmetry ( 5 ) ,  states in the IO)’ ( vnT = val = 0) and 
I*)’ (v,? = v,l = 1) group which can be connected by applying the operation ( 5 )  on 
every site of the cell are given the same T ,  label. A similar correspondence is made 
between states in the I+)’ group ( v a t  = 1, vu1=O) and I-)’ group ( v m t  =0,  v a l =  1)  by 
applying spin-inversion symmetry c,, t) c,-,. This leaves us with the problem of combin- 
ing the T, labels of states in e.g. the IO)’ group withistates in the I+)’ group. 

We have connected this problem with the problem of diagonalising Ido,,. As stated 
previously X,,, s’,, and X,,, n,r,rr commute with Elo,,, 

In  table 1 we report the possible values that these quantum numbers take and the 
number of states with these values in the IO)’ and I+)’ groups, respectively. 

If for a moment, we consider the simultaneous eigenstates of 

N = c c nul,, 

I ,  

Table 1. Number of eigenstates of Ho,, with given I;, I;, n,,,, and 8, s:~ in the groups 
with vat = vu- = 0 (10)‘ group) and vmt = I ,  v,, = 0 (I+)‘ group). The crosses indicate states 
between which matrix elements of c, or c: operators can be non-zero. 

IO)‘ I+)‘ 
I;, E, net,, z,s:, I;, I;, n,,,, z,s:, 

0 0 I 5 5 I 
2 2 I O  + 3 3 I O  

2 -2 I O  7 3 I O  
4 4 5 1 1 5 
4 2 50 + 3 1 50 
4 0 100 + 5 1 100 
4 -2 50 7 1 50 
4 -4 5 9 1 5 

2 0 25 5 3 25 
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and 

S' = 2 S i i  
i 

we see that states which are in the same row of table 1 can be obtained from one 
another by interchanging 10) and I+) states and I-) and I*) states, at every site. For 
example, with this operation the state I+ + + 0 -) ( N  = 4, S' = 2) becomes 10 0 O+ *) 
( N  = 3, S' = 1) .  This operation is not a symmetry of H, except when U = 0. For U # 0, 
it is however a symmetry between the classes of states in the same row of table 1. We 
will therefore give the eigenstates of H0+ which are in the same row of table 1 the same 
set of T~ labels. In this way, the T~ label has still to be specified within the nine classes 
of states in table 1. Let us now write down the first-order term of the RHS of (IO). It 
is, between cells a and P (figure 1): 

t C C C  [(VU?, v ~ l ,  T u l c ~ k l v i ~ ,  vhl ,  T u ) ( v p ~ ,  vpr, TpIcpsulv&r, vbl ,  T p )  
7, TP 

v m J ,  T u / C : 3 u / v b T ,  v&J, T u )  

X ( v p t ,  v p J ,  T p ~ ( C p 4 u + C p S u ) l y ~ ~ ~  V b l ,  Tp)t-ccl 

Figure 1. Division of the cubic lattice into cross-shaped cells. 

(cc stands for complex conjugate; a phase factor coming from fermion anticommuta- 
tions was not written down because it drops out with a similar factor of the RHS of 
equation (9) (Vanderzande and Stella 1984).) The function ~ ( x ,  y)  is defined by 

~ ( x , y ) = ( e " - e ' ) / ( x - y )  i f x # y  

= ex i f x = y .  

The matrix elements are non-zero only between states for which both N and S' differ 
by one, i.e. only between states in the rows which are indicated by a cross in table 1. 
For the other states, the T,  label is irrelevant (up to first order). 
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A problem arises when we write down the interaction between cells (Y and y in 
figure 1 ,  which is: 

 V VU^, VU$, T A C U 4 , I ~ b t ,  Vh.1 ,  7,) 

X ( V y t ,  Vy$, f y l ( C y 2 u + C y S o ) l ~ l ~ ,  V ' y l ,  TY)+CCI 

x X [ P E o ( v u t ,  V a l ,  T u ) + P E o ( V y f r  V,1, Ty), PEo(vht9 4, Tu) 
+PEo(vlt, V l i ,  .,)I. (13) 

Can we be sure that (11) and  (13) give the same t' ( t ,  U ) ?  In  general, it is quite 
possible that the interaction t' will be anisotropic. In order to solve this question, 
together with the problem of the remaining T~ labelling (and to simplify the diagonalisa- 
tion of e.g. the 100 x 100 matrices, table l ) ,  we consider the symmetry group C4c of 
the cell. The character table of this group is, for convenience, represented in table 2.  
We use standard notation for the group elements and representations (see e.g. Landau 
and Lifschitz 1967). 

Table 2. Character fable of the point group c4" (d  is the dimension of the representation). 

A ,  1 1 1 I 1 I 
A2 I I I - 1  - I  1 
5, I I - 1  I - I  1 
5, 1 1 - I  - 1  1 1 
E 2 - 2  0 0 0 2 

We will take our eigenstates of Ho,u to also be eigenstates of U (  C,), the representa- 
tion matrix of the group element C,. In this case, all matrix elements in ( 1  1 )  and  (13) 
can be written in terms of matrix elements of the annihilation operator at  site 2 of a 
cell; clT This gives a fourfold reduction in the number of matrix elements to be 
calculated. For example 

+ I I  

(VuT ,  Vml, 7 h / C m 3 , u ( V u t ,  T u )  

= ( V u ? ,  V u $ ,  Tu/ U-'(c4)U(c4)C~3, ,U-'(c , )  U(C~)IV&T, V b j ,  7,) 

= EO( V u ? ,  V u J ,  Tu ; c4)*&0( vb? ,  vbi, Tu ; c4) 

x ( V & , ,  Vhl, TuICu2vlVuTr Vml, (14) 

U ( g ) l V m f ,  T m a ) = E O ( v m f ,  T u ;  g)lVuT, Vel, Tu) .  (15) 

where we have defined for the group element g (which can be C4, C, = C:, C:) 

For eigenstates of 
can be i l ,  whereas for the E-representations it can also be +i .  To fix our ideas, let 
us now consider the subset of states with N = 4, S' = 2 in the IO)' group, and  the subset 
with N = 3, S' = 1 in the I+)' group. They both contain 50 elements (similar arguments 
to the ones below can be applied to the other subsets, indicated by a cross, in table 
1 ) .  Using group theory, we can calculate how many of the common eigenstates of 

belonging to the one-dimensional representations of C,, 
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Table 3. Division of the eigenstates with ( N  = 4, S’ = 2) ,  ( N  = 3, SL = I )  according to the 
representation of C,,, the last two columns give the number of states transforming according 
to some representation. 

~~~ ~ 

A ,  1 1 4 
A2 1 1 8 
B ,  - 1  I 5 
B2 -1 1 7 
E + i  - 1  13 

- - I  - 1  13 

Ho,, and U(C,) in this space belong to a certain representation: these numbers are 
given in table 3. 

From this it is obvious to give e.g. the states of the IO)’ set which transform according 
to A ,  the same T, label as the states in the I+)’ set transforming according to B2, to 
connect A2 in IO)’ with BI in I+)’, etc. We have now greatly simplified our calculation. 
Firstly, the largest matrices to be diagonalised become 24 X 24 (complex) matrices, 
which can easily be diagonalised using standard algorithms (they are in the ( N  = 5 ,  
S’ = 1 )  and ( N  = 4, S’ = 0) groups, E representations). Furthermore, again using 
elementary group theory, we can derive selection rules for the matrix elements of c2,,, 
the only matrix elements we still had to calculate (equation (14)). 

These rules indicate that matrix elements between states of the A I  and B2, or 
between states of the A2 and BI representations are zero. Because these states are 
connected by our T, correspondence (table 3) ,  in the sum of equation ( 1  1) (or (13)) 
only matrix elements between states in the E representations survive, so that only for 
these states does the T, labelling have to be specified. We give the T, labelling in these 
spaces according to the energy of the state: increasing T, label for decreasing energy. 
Because of this T, labelling, and because of the selection rules, we only have to calculate 
80 (instead of 256)  matrix elements of c 2 p  

Finally, with this choice of the labelling we can show that t ’  calculated with ( 1  1) 
or (13) is the same, thus removing the anisotropy problem. If we calculate t’ it turns 
out to be complex (because the eigenstates of U (  C,) have complex coefficients). Due 
to the freedom in the choice of the phase of the Wannier states, we only have to 
consider the absolute value of t ’ .  It is important to point out once again the considerable 
simplification which has occurred in the technical problem of calculating t’ via ( 1  1 )  
or (131, using group theoretical arguments. If we also take into account the total spin 
( X i E u  SiI2 which also commutes with Ho.,, and the quantum number for Hubbard-like 
models introduced by Nowak (1981), further simplification could arise. However this 
is no longer necessary because the calculation has already become quite tractable. 
These techniques could also be applied to other models. It would be relatively easy 
to study e.g. the two-dimensional X Y  model using a square cell of nine spins. 

4. Results and discussion 

We calculated the flow generated by the map (9). The calculation (construction of the 
Hamiltonian, transformation to eigenstates of C4, diagonalisation, calculation of matrix 
elements and flow) was completely done by computer. 
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One new type of interaction is generated by the map, when U and the temperature 
T are both different from zero. It is of the same type as in the one-dimensional case 
(Vanderzande and Stella 1984), 

(16) - D E  c (c:,c,u + c;uct" 1 - % - U  - n, -J2 .  
( I J )  U 

We took this interaction into account perturbatively. 
As shown in Stella et a1 (1983), in the zero-temperature limit our renormalisation 

scheme coincides with the so-called block-spin method for quantum systems (Pfeuty 
et al 1982). In this scheme, only the states with lowest energy, in each of the four 
groups (corresponding to the effective cell states) are considered. In this model, and 
with the cell we choose, there is a selection rule for V between these states so that we 
obtain t'( t ,  U, D )  = 0, when T = 0. The solution to this problem in the ground state 
renormalisation of Pfeuty et al (1982) is well known. One simply considers four 
low-lying states with non-zero matrix elements instead of the four with lowest energy. 
In the appendix we show how this procedure also can be obtained from a scheme like 
ours, in the zero-temperature limit. Here, we choose the lowest energy states in the E 
representation space (with cO( C,) = +i)  though our results seem rather insensitive to 
the specific choice made. 

The flow in parameter space resulting from our calculation is shown schematically 
in figure 2 (projected on the plane D = 0). We find only trivial fixed points. Except 
when U / t  =0,  the ground state always renormalises to U / t  =CO. In that limit the 
model is equivalent to an  antiferromagnetic Heisenberg model, so that we can conclude 
that the ground state is always antiferromagnetic. There is no transition for finite U /  t 
in the ground state. This is in contradiction with previous results which were obtained 
with a one-dimensional cell (Hirsch 1980). There are also indications (Dasgupta and  
Pfeuty 1981) that a calculation with a 3 X 3  cell would give a transition in the ground 
state. At this moment the reason for this discrepancy is not clear. On the other hand, 
the Monte Carlo calculations of Hirsch (1983) agree with our results, not only at zero 
temperature but also at finite temperatures, where neither of the two calculations show 
the presence of a transition. We have calculated the ground state energy, which is 
found to have the same qualitative behaviour as the Monte Carlo calculations. 

0 
U /  t 

Figure 2. Renormalisation Row for the two-dimensional Hubbard model according to the 
present calculation (projection on the plane D = 0) .  
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However, the cell we have used is too small, or we should go to higher order in 
perturbation theory to determine accurate thermodynamic properties. 

Summarising, in this paper, we have presented the first real space renormalisation 
study of a fermion model, in two dimensions and at  arbitrary temperature. We have 
showed how group theory can considerably simplify the calculation. We have found 
that the Hubbard model in two dimensions, about which very few results are established, 
shows no magnetic nor metal-insulator phase transition. The ground state is antifer- 
romagnetic. These results agree with Monte-Carlo calculations. The paper shows how 
Monte Carlo methods, which are more ‘experimental’, and  renormalisation group 
techniques, which are more analytic, can complement each other in the study of 
complicated quantum systems. It is certainly possible that a combination of the two 
methods may be able to give insight into the three-dimensional Hubbard model. We 
hope that the techniques established in this paper will also be useful in dealing with 
other quantum spin or fermion models. 
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Appendix 

In a previous paper (Stella et al 1983) we showed how the block spin ground state 
renormalisation method (Pfeuty er a1 1982) for quantum systems can be seen as the 
T + 0 limit of a transformation like (9), using (10) up  to first order. 

In this way, one always finds that the ground state renormalised interaction is 
determined by the states with lowest energy belonging to a group of states, correspond- 
ing to an  effective cell spin value. In the notation of the paper we have, for a fermion 
system, at T = 0 

( I v u t l ,  I.ml}lv’l{vh.tl, { d x h ) = ( { v u t > ,  { vu l> ,  { W v . h t ) ,  {vbJ, (1)). (A1 1 
Sometimes it can be useful, from the ground state point of view, to have other states 
as ‘effective cell states at T = 0’, and this is indeed done in several calculations. One 
example is when the RHS of ( A I )  would be zero. We can derive this procedure from 
(9) in the limit T + 0 ,  by introducing into (9) a unitary operator (Stella et al 1983), 
which in fact means nothing more than working with states I {  vat} ,  { v~,}, { T ~ } )  which 
are no longer eigenstates of H,,Q. 

In  this way, we change (9) into 

({ vmtl ,  vudexp(-P’H‘)I{ dt}, I .hi))  
=Tr(,l({vmtl, I v a h ,  {~~ l l  U - ’  exp(-PH)  ul{vh.r},  { y & l } ,  (7,)) (‘42) 

where 

U = 1 + U ,  + U, + . . . 

U’= U-’  = 1 - U ,  +(  u:- U 2 ) + .  . .. 

(A3) 
and U, is of order V‘. Consequently, 

(A4) 



898 C Vanderzande 

Suppose we want to have instead of (Al l  

and all other matrix elements of U, equal to zero. It can easily be verified that this is 
a unitary transformation. 
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